Abstract

Thermodynamic and kinetic aspects of the formation of trihalomethanes and haloacetic acids determined based on the quantum chemical (QC) simulations were compared in this study with the experimental data generated using the differential spectroscopy approach in chlorination and chloramination. The ratios of the slopes of the correlations between -DlnA350 values and individual DBPs concentrations (SNH2Cl/SHOCl) were observed to be linearly correlated with the ratios of the Gibbs free energies (ΔGNH2Cl/ΔGHOCl) of the corresponding reactions of chloramine and chlorine with acetaldehyde which was used as a model DBP precursor in QC simulations. Further QC examination of the kinetics of chlorination and chloramination of the model compound acetoacetic acid showed that the activation energy of reactions between monochloramine that directly participates in substitution reactions to form mono-, di and tri-halogenated intermediates are 2–3 times higher than those of HOCl formed via the hydrolysis monochloramine. This result confirms that the interactions of chloramine with NOM and ensuing DBP formation are primarily mediated by the free chlorine released as a result of the hydrolysis of monochloramine while direct halogenation of NOM by monochloramine is likely to provide a small contribution to DBP formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.