Abstract

Non-invasive liquid biopsies of circulating tumor DNA (ctDNA) is a rapidly growing field in the research of non-small cell lung cancer (NSCLC). In this study, factors affecting the concordance of mutations in paired plasma and tissue and the detection rate of ctDNA in real-world Chinese patients with NSCLC were identified. Peripheral blood and paired formalin-fixed paraffin-embedded tumor tissue samples from 125 NSCLC patients were collected and analyzed by sequencing 15 genes. Serological biomarkers were tested by immunoassay. The overall concordance between tumor and plasma samples and the detection rate of somatic mutations in ctDNA was 69.2% and 78.4%, respectively. The concordance and detection rate raised with clinical stage were stage I: 14.3%, 14.3%; stage II: 53.3%, 60.0%; stage III: 71.4%, 78.1%; stage IV: 74.1%, 85.2%. With increased tumor diameter, the concordance and detection rate raised from 33.33% to 71.64% and 33.33% to 80.8%, respectively. For patients with partial response, stable disease, progressive disease, and who were treatment-naïve, the concordance and detection rates were 0.0%, 62.7%, 75.2, 73.6%, and 16.7%, 61.9%, 83.3%, 86.5%, respectively. Serological markers: CEA, CA125, NSE, and CYFRA21-1 were significantly higher for patients with detectable somatic alterations in ctDNA than in those who were ctDNA negative (17.08 ng/mL vs. 3.95 ng/mL, 21.63 U/mL vs. 18.27 U/mL, 17.68 U/mL vs. 14.14 U/mL, and 6.55 U/mL vs. 3.81 U/mL, respectively). Advanced-stage, treatment naïve or poor therapy outcome, and large tumor size were associated with a high concordance and detection rate. Patients with detectable mutations in ctDNA had a higher level of carcinoembryonic antigen, CA125, NSE, and CYFRA21-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call