Abstract

The denaturation of creatine kinase in urea solutions of different concentrations has been studied by following the changes in the ultraviolet absorbance and intrinsic fluorescence as well as by the exposure of hidden SH groups. In concentrated urea solutions, the denaturation of the enzyme results in negative peaks at 285 nm with shoulders at 280 and 290 nm and positive peaks at 244 and 302 nm in the denatured minus native enzyme difference spectrum. The fluorescence emission maximum of the enzyme red shifts with increasing intensity in urea solutions of increasing concentrations. At least part of these changes can be attributed to direct effects of urea on the exposed Tyr and Trp residues as shown by experiments with model compounds. The inactivation of this enzyme has been followed and compared with the conformational changes observed during urea denaturation. A marked decrease in enzyme activity is already evident at low urea concentrations before significant conformational changes can be detected by the exposure of hidden SH groups or by ultraviolet absorbance and fluorescence changes. At higher urea concentrations, the enzyme is inactivated at rates 3 orders of magnitude faster than the rates of conformational changes. The above results are in accord with those reported previously for guanidine denaturation of this enzyme [Yao, Q., Hou, L., Zhou, H., & Tsou, C.-L. (1982) Sci. Sin. (Engl. Ed.) 25, 1186-1193] and can best be explained by assuming that the active site of this enzyme is situated near the surface of the enzyme molecule and is sensitive to very slight conformational changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.