Abstract
AbstractTo predict the temperature profile in an ohmic reactor, it is essential to know the thermal and electrical conductivity of the reactor geometry. Those properties can be considered on different modeling scales: On the detailed (resolved) scale, the reactor consists of a packed bed structure, where the properties of each substance are considered. On the effective (continuum) scale, the packed bed is considered as effective medium with composite properties. In this contribution, we consider both scales and compare the results. Based on the detailed description with a resolved microstructure, the bed's effective thermal and electrical conductivity are computed. These properties are compared with analytical formulas. The electrical conductivity is the basis for the electrical field and the current density. Finally, these properties are used to evaluate the ohmic heating of the packed bed exposed to flow and to compute the temperature distribution within the reactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.