Abstract
The nucleotide sequences of closely related members of a gene family can be used to investigate spontaneous mutations. Here we analyse the sequences of different yeast invertase genes which are more than 93% identical in the coding region and share some very similar, but not identical sequences in the noncoding flanking regions. Since all except one of the invertase genes are active, most of the base substitutions are silent. Within the coding region the base substitutions are unevenly distributed, indicating that parts of the genes were homogenized, probably via gene conversion. Transitions occurred more frequently than transversions in both, coding and noncoding regions. In the coding region pyrimidine transitions were the most abundant event due to silent changes mainly in the third codon position. In the noncoding region pyrimidine and purine transitions were found at equal frequencies. Transversions inverting base pairs (A-T and G-C) outnumber transversions changing base pairs (A-C and G-T). While the spectrum of mutations in the coding region is influenced by selective pressure to maintain the amino acid sequence, the spectrum in the noncoding region may be much less affected by selective pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.