Abstract
The positively charged polyamines putrescine, spermidine, and spermine are thought to be important in the maintenance of chromosomal structure. Polyamine depletion by the ornithine decarboxylase inhibitor, 2-difluoromethyl-ornithine (DFMO) is known to alter the effect of several DNA active agents, presumably resulting from the altered conformation of the polyamine depleted DNa. Here we compare the polyamine depletion effects of DFMO and the spermidine analogue N1,N8 bis(ethyl)spermidine (BESpd) on the formation of Topoisomerase II mediated, 4′-(9-acridinylamino) methane-sulfon-m-anisidide (m-AMSA) induced cleavable complex formation in human large cell undifferentiated lung carcinoma NCI H157 cells. This human cell line responds in the normal cytostatic manner to DFMO, whereas it responds in an unusual cytotoxic manner to treatment with BESpd. Here we report that neither DFMO nor BESpd alone affects the formation of cleavable complex. However, both compounds significantly enhance the m-AMSA induced formation of cleavable complex, each by approximately 1.6 fold. These results indicate that both DFMO and BESpd lead to a similar depletion of nuclear polyamines. Additionally, although BESpd closely resembles the natural polyamine spermidine, it appears that it cannot substitute for Spd at the level of DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.