Abstract

Acellular dermal matrix (ADM) is treated using various devitalization and aseptic processing methods. The processing effects on ADM were evaluated by histochemical tests. From January 2014 to December 2016, 18 patients [average age, 43.0 (range, 30-54) years] who underwent breast reconstruction with an ADM and tissue expander were prospectively enrolled. During the permanent implant replacement, a biopsy of the ADM was performed. We used three different human-derived products, namely, Alloderm®, Allomend®, and Megaderm®. Hematoxylin and eosin, CD68, CD3, CD31, and smooth muscle actin were used to evaluate the collagen structure, inflammation, angiogenesis, and myofibroblast infiltration. Each ADM was semi-quantitatively analyzed. Significant differences in collagen degradation, acute inflammation, and myofibroblast infiltration were observed among the ADMs. Collagen degeneration (p<0.001) and myofibroblast infiltration (smooth muscle actin-positive, p=0.018; CD31-negative, p=0.765) were the most severe in Megaderm®. Acute inflammation, represented by CD68, was most severe in Alloderm® (p=0.024). Both radiation and freeze-drying treatment physically damaged the collagen structure. Collagen degeneration was most severe in Megaderm®, followed by Allomend® and Alloderm®. Since Alloderm® is treated using chemicals, an assessment of the chemical irritation is warranted. The biopsy results were inconclusive. Therefore, to better interpret processing, more large-scale, serial, histochemical studies of each ADM are needed. This journal requires that authors 38 assign a level of evidence to each article. For a full 39 description of these Evidence-Based Medicine ratings, 40 please refer to the Table of Contents or the online 41 Instructions to Authors www.springer.com/00266 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.