Abstract

Former studies by Hoeschen and Buhr indicated a higher total noise in a thorax image than expected from technical noise, i.e. quantum and detector noise. This difference results from the overlay of many small anatomical structures along the X-ray beam, which leads to a noise-like appearance without distinguishable structures in the projected image. A method is proposed to quantitatively determine this 'anatomical noise' component, which is not to be confused with the anatomical background (e.g. ribs). This specific anatomical noise pattern in a radiograph changes completely when the imaging geometry changes because different small anatomical structures contribute to the projected image. Therefore, two images are taken using slightly different exposure geometry, and a correlation analysis based on wavelet transforms allows to determining the uncorrelated noise components. Since the technical noise also differs from image to image, which makes it difficult to separate the anatomical noise, images of a lung phantom were produced on a low-sensitive industrial X-ray film using high-exposure levels. From these results, the anatomical noise level in real clinical thorax radiographs using realistic exposure levels is predicted using the general dose dependence described in the paper text and compared with the quantum and detector noise level of an indirect flat-panel detector system. For consistency testing, the same lung phantom was imaged with the same digital flat-panel detector and the total image noise including anatomical noise is determined. The results show that the relative portion of anatomical noise may exceed the technical noise level. Anatomical noise is an important contributor to the total image noise and, therefore, impedes the recognition of anatomical structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.