Abstract
The quest for ideal pulp capping materials has given rise to the development of newer materials such as light cure mineral trioxide aggregate (MTA). The bond strength of the pulp capping materials with overlying restoration is one among the several factors that are critical for the success of vital pulp therapy. Hence, we conducted this study to evaluate and compare the shear bond strength (SBS) of light cure MTA and light cure calcium hydroxide with nanofilled composite. Thirty acrylic blocks each with a central hole were prepared to uniform dimensions and randomly distributed into two equal groups. In Group I, light cure MTA, and in Group II, light cure calcium hydroxide was used as pulp capping materials. After the application of adhesive system, nanofilled composites were applied onto the pulp capping material using a cylindrical plastic matrix. The SBS was tested on a universal testing machine (Instrom 3366, UK) at a crosshead speed of 0.5 mm/min. The samples were examined under stereomicroscope and scanning electron microscope to analyze different modes of failure. The results were statistically analyzed using independent sample t-test. Light cure MTA attained the mean SBS of 6.54 MPa and light cure calcium hydroxide attained the mean SBS of 6.56 MPa. There was no significant difference statistically in SBS of both the materials (P < 0.05). The modes of failure were predominantly mixed failure followed by cohesive failure within the restorative material in both Group I and II. The results of the study suggest that the SBS of light cure MTA and light cure calcium hydroxide is comparable. The modes of failure analyzed in both light cure MTA and light cure calcium hydroxide are not significantly different statistically. Hence, both materials can be successfully used as pulp capping material with nanofilled composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Indian Society of Pedodontics and Preventive Dentistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.