Abstract

Rotary cement kiln is the main part of a cement plant that clinker is produced in it. Clinker is the main ingredient of cement. Continual and prolonged operation of rotary cement kiln is vital in cement factories. However, prolonged operation of the kiln is not possible and periodic repairs of the refractory lining would become necessary, due to non-linear phenomena existing in the kiln, such as sudden falls of coatings in the burning zone and probability of damages to the refractory materials during production. This is the basic reason behind the needs for a comprehensive model which is severely necessary for better control of this process. Such a model can be derived based on the mathematic analysis with consultation of expert operator experiences. In this paper both linear and nonlinear model are identified for rotary kiln of Saveh white cement factory. The linear model is introduced using Box-Jenkins structure. The results of the obtained model were satisfactory compared to some other linear models and can be used for designing adaptive or robust controllers. Also, nonlinear system identification via Neural Network technique is performed and its result was compared to linear models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.