Abstract

In this paper, a fusion approach to determine inverse kinematics solutions of a six degree of freedom serial robot is proposed. The proposed approach makes use of radial basis function neural network for prediction of incremental joint angles which in turn are transformed into absolute joint angles with the assistance of forward kinematics relations. In this approach, forward kinematics relations of robot are used to obtain the data for training of neural network as well to estimate the deviation of predicted inverse kinematics solution from the desired solution. The effectiveness of the fusion process is shown by comparing the inverse kinematics solutions obtained for an end-effector of industrial robot moving along a specified path with the solutions obtained from conventional neural network approaches as well as iterative technique. The prominent features of the fusion process include the accurate prediction of inverse kinematics solutions with less computational time apart from the generation of training data for neural network with forward kinematics relations of the robot.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.