Abstract

Local hemodynamic information may help to stratify rupture risk of cerebral aneurysms. Patient-specific modeling of cerebral hemodynamics requires accurate data on BFV in perianeurysmal arteries as boundary conditions for CFD. The aim was to compare the BFV measured with PC-MR imaging with that obtained by using intra-arterial Doppler sonography and to determine interpatient variation in intracranial BFV. In 10 patients with unruptured intracranial aneurysms, BFV was measured in the cavernous ICA with PC-MR imaging in conscious patients before treatment, and measured by using an intra-arterial Doppler sonography wire when the patient was anesthetized with either propofol (6 patients) or sevoflurane (4 patients). Both techniques identified a pulsatile blood flow pattern in cerebral arteries. PSV differed >50 cm/s between patients. A mean velocity of 41.3 cm/s (95% CI, 39.3-43.3) was measured with PC-MR imaging. With intra-arterial Doppler sonography, a mean velocity of 29.3 cm/s (95% CI, 25.8-32.8) was measured with the patient under propofol-based intravenous anesthesia. In patients under sevoflurane-based inhaled anesthesia, a mean velocity of 44.9 cm/s (95% CI, 40.6-49.3) was measured. We showed large differences in BFV between patients, emphasizing the importance of using patient-specific hemodynamic boundary conditions in CFD. PC-MR imaging measurements of BFV in conscious patients were comparable with those obtained with the intra-arterial Doppler sonography when the patient was anesthetized with a sevoflurane-based inhaled anesthetic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.