Abstract

Spark ignition engines are the most widespread in the automotive industry, they consume more than 35% of the liquid fuel. Therefore, it is of a great value to reduce this percentage the minimum possible. Using electronics and direct injection with the wide-band oxygen sensor may be the technology to solve this problem since traditional electronic control systems use reference stoichiometry to regulate air fuel ratios, using the wide-band oxygen sensor permits the use of reference air fuel ratio values over a wider range.Experiments were carried out on a 4-cylinder 1.8 L displacement volume Mitsubishi 4G93 DOHC GDI using the narrow-band lambda oxygen sensor and the wide-band lambda oxygen sensor, utilizing a lean air-fuel ratio. Road load test conditions were considered. A dynamometer was used in addition to a scan tool and an exhaust gas analyzer. Development extensive work was carried out to correct the single-band to wide-band.The obtained results show that using the wide-band oxygen sensor improves brake specific fuel consumption by 8.8–11.6% between 25% and 100% throttle openings. Whereas, HC and NOx emission gases were reduced by 19.4% and 27.3%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.