Abstract
The optimum X-ray tube voltage for chest radiographic examinations remains unclear; hence, the tube voltage varies between medical facilities. An exposure index (EI) was proposed to standardize the parameters for radiographic examinations. However, even if identical EI values are used to examine the same person, organ doses may vary due to differences in tube voltages. In this study, the variation in organ doses between different beam qualities under identical EI values for chest radiographic examinations was investigated using Monte Carlo simulations. A focused anti-scatter grid as well as standard and larger physique-type medical internal radiation dose (MIRD) phantoms were studied under tube voltages of 90, 100, 110, and 120 kVp. The organ doses in the MIRD phantom increased as the X-ray tube voltage decreased, even with identical EI values. The absorbed doses in the lungs of standard and large-sized MIRD phantoms at 90 kVp were 23% and 35% higher than those at 120 kVp, respectively. The doses to organs other than the lung at 90 kVp were also higher than those at 120 kVp. From the perspective of reducing radiation doses, a tube voltage of 120 kVp is considered better for chest examinations compared with a tube voltage of 90 kVp under identical EI values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.