Abstract

The comparison of heat losses by pipelines of an extensive residential neighborhood heating system for two options of the distribution network was carried out for a residential neighborhood in Kharkov. The proposed configuration of the heating network differs from the existing ("basic") one in using of the law of heating medium flow rate variation along the heat pipe length. This law takes into account increased flow rate of heating water through branches at the initial sections of the pipeline. The actual flow rate distribution is approximated by a step function. The difference in the laws of flow rate variation is taken into account by the exponent value. The calculation of heat losses was carried out for underground pipelining in non-accessible tunnels. The temperature of heat line water is taken to be the corresponding to the design outdoor air temperature for heating according to the temperature schedule of the heating network. Specific heat losses by pipelines in heat network sections are considered to be at the standard level for non-accessible tunnels. The soil temperature at the depth of the heat pipe axis is taken equal to 5°C. Heat losses by the structural elements of the heat network are taken into account by a factor of 1.15. The variation of the flow rate and temperature of network water in rated pipeline sections is considered in the analysis. The water flow rate at the sections was found based on the design thermal loads of connected buildings.
 It is shown that when choosing the configuration of the distribution network of the heating system of a group of buildings, preference should be given to the option with a lower value of the exponent in the equation for heating medium flow rate variation along the length of the main line of the network. For extensive heating networks, this can be achieved by connecting as many buildings as possible to the heating network sections close to a heat supply station. An increase in the network water flow rate through the branches at the initial sections of the pipeline ensures a decrease in heat losses by the network pipelines. For the considered part of a residential neighborhood, the decrease in heat loss at the design outdoor air temperature for heating is 5.5 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.