Abstract

Two surface treatments, molybdenizing and depositing NiCrAlY coating, were applied to improve the microhardness and the oxidation resistance of titanium and Ti-6Al-4V. Coupons were analyzed using optical microscopy (OM), scanning electron microscopy (SEM) with X-ray energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). Vickers hardness and isothermal oxidation tests were carried out to evaluate the effects of these two surface treatments on the microhardness and oxidation resistance of the substrates. The post vacuum heat treatment of the NiCrAlY coating and the molybdenizing parameters were also discussed. It is found that molybdenizing can obviously increase the surface hardness of titanium due to the formation of β, α″, and α′ phases in the diffusion layer. As γ′ phase is formed after vacuum heat treatment, the NiCrAlY coating is effective in improving the surface hardness of Ti-6Al-4V. The NiCrAlY coating can obviously decrease the oxidation rate of Ti-6Al-4V at 700–900°C, which can be attributed to the formation of Al2O3 and Cr2O3 mixed scale during the oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.