Abstract

1H-detected 14N heteronuclear multiple-quantum coherence (HMQC) magic-angle-spinning (MAS) NMR experiments performed at fast magic-angle spinning (≥50 kHz) are finding increasing application, e.g., to pharmaceuticals. Of importance to the efficacy of these techniques is the recoupling technique applied to reintroduce the 1H-14N dipolar coupling. In this paper, we compare, by experiment and 2-spin density matrix simulations, two classes of recoupling scheme: first, those based on n = 2 rotary resonance, namely R3 and spin-polarisation inversion SPI-R3, and the symmetry based SR412 method and, second, the TRAPDOR method. Both classes require optimisation depending on the magnitude of the quadrupolar interaction, and thus there is a compromise choice for samples with more than one nitrogen site, as is the case for the studied dipeptide β-AspAla that contains two nitrogen sites with a small and large quadrupolar coupling constant. Considering this, we observe better sensitivity for the TRAPDOR method, though noting the marked sensitivity of TRAPDOR to the 14N transmitter offset, with both SPI-R3 and SR412 giving similar recoupling performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.