Abstract

This study shows that the model fitting based on machine learning (ML) from experimental data can successfully predict the electrochromic characteristics of single- and dual-type flexible electrochromic devices (ECDs) by using tungsten trioxide (WO3) and WO3/vanadium pentoxide (V2O5), respectively. Seven different regression methods were used for experimental observations, which belong to single and dual ECDs where 80% percent was used as training data and the remaining was taken as testing data. Among the seven different regression methods, K-nearest neighbor (KNN) achieves the best results with higher coefficient of determination (R2) score and lower root-mean-squared error (RMSE) for the bleaching state of ECDs. Furthermore, higher R2 score and lower RMSE for the coloration state of ECDs were achieved with Gaussian process regressor. The robustness result of the ML modeling demonstrates the reliability of prediction outcomes. These results can be proposed as promising models for different energy-saving flexible electronic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.