Abstract
Background:Phase analysis can be easily performed by different software to assess the left ventricular dyssynchrony from gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) with high precision. However, the normal values of histogram bandwidth (HBW) and phase standard deviation (PSD) and their comparison using different programs have not been fully elucidated and actively being evaluated at present. The aim of this study was to determine the phase analysis parameters values and to compare the phase indices of two commonly used programs in a group of patients with normal gated SPECT-MPI.Methods:Phase parameters were retrospectively evaluated in 138 consecutive nondiabetic patients having a normal gated SPECT-MPI using the quantitative gated SPECT (QGS) and Emory Cardiac Toolbox (ECTb) software. HBW, PSD, and phase entropy were calculated separately using both programs.Results:The fair correlation between software programs was observed. HBW and PSD in QGS and ECTb were 26.20 ± 9.7 and 25.46 ± 8.0 (r-value. 56, SEE 6.65) and 6.64 ± 2.5 and 7.65 ± 2.5 (r = 0.54, SEE 2.14), respectively. The value of phase entropy in QGS program was 45.08 ± 6.3. A fair correlation between phase entropy and PSD in QGS was observed (r = 0.44, 95% confidence interval-0.29–0.56).Conclusion:Phase analysis parameters derived from gated SPECT-MPI in patients with normal myocardial perfusion are program dependent and may differ. The results cannot be interchangeably used in the same patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.