Abstract
Reconstructed posterior tibial slope (PTS) plays a significant role in kinematics restoration after total knee arthroplasty (TKA). However, the effect of increased and decreased PTS on prosthetic type and design has not yet been investigated. We used a finite element model, validated using in vitro data, to evaluate the effect of PTS on knee kinematics in cruciate-retaining (CR) and posterior-stabilized (PS) fixed TKA and rotating platform mobile-bearing TKA. Anterior-posterior tibial translation and internal-external tibial rotation were investigated for PTS ranging from -3° to 15°, with increments of 1°, for three different designs of TKA. Tibial posterior translation and external rotation increased as the PTS increased in both CR and PS TKAs. In addition, there was no remarkable difference in external rotation between CR and PS TKAs. However, for the mobile-bearing TKA, PTS had less effect on the kinematics. Based on our computational simulation, PTS is the critical factor that influences kinematics in TKA, especially in the CR TKA. Therefore, the surgeon should be careful in choosing the PTS in CR TKAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.