Abstract

Piezoelectric energy harvesting from ambient vibrations offers an environmentally friendly approach to powering distributed sensors for the Internet of Things. This paper gives a direct comparison of Pb(Zr,Ti)O3 (PZT)- and (K,Na)NbO3 (KNN)-based harvesters using a compliant mechanism harvester design for resonant frequencies of 20, 40, and 70 Hz. At 70 Hz, the measured power densities for PZT- and KNN-based devices are 1139 and 31 μW/mm3, respectively, for unimorph structures on nickel foils of 25 and 50 μm in thickness. The power density ratios scale proportionally to the material energy harvesting figures of merit. Energy harvesting with the compliant mechanism design is twice as efficient when compared to harvesting with a simple cantilever beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.