Abstract

This study investigated the effect of surface roughness for improving interfacial adhesion in hybrid materials with aluminum (Al)/carbon fiber reinforced epoxy composites (CFREC). The surface roughness of the Al was controlled using different types of sanding paper and varied sanding times. Al surface roughness were evaluated using static contact angle (CA) and 3D surface scanning measurements after the different sanding processes. Lap shear strength (LSS) tests were performed to evaluate the interfacial adhesion between CFREC and Al with the different Al surface treatments. The theoretical maximum cohesive strength (TMCS) and work of adhesion, Wa between the Al and CFREC were correlated with surface energy of epoxy adhesive and LSS. The surface energy of epoxy adhesive and TMCS between CFREC and Al exhibited a proportional relationship. The TMCS was also directly related to the LSS between Al and CFREC. It was found that an optimum sanding process yielding a Ra, 1.4 μm Al surface roughness exhibited the highest work of adhesion, as well as the largest LSS and TMCS for hybrids of Al-CFREC. Proper Al surface control in these materials shows real promise for enhancing the mechanical properties for aerospace, automotive and other practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.