Abstract

The deep-sea vent shrimp Rimicaris exoculata is believed to occur at the hot end of the hydrothermal biotope in order to provide essential elements to its epibiosis. Because it is found close to hot venting water, R. exoculata lives in a highly fluctuating environment where temperature (2–40 °C in the swarms) can exceed its critical maximal temperature (33–38.5 ± 2 °C). In order to understand how this vent shrimp copes with hyperthermia, we compared its molecular heat stress response following an acute but non-lethal heat-shock (1 h at 30 °C) with that of its monophyletic shallow-water relative, the shrimp Palaemonetes varians, known to frequently undergo prolonged exposure at temperatures up to 30 °C in its natural environment during summer. We isolated four isoforms of heat-shock proteins 70 (HSP70) in R. exoculata (2 constitutive and 2 inducible isoforms) and two isoforms in P. varians (1 constitutive and 1 inducible isoform) and quantitatively compared their magnitude of induction at mRNA level, using real-time PCR, in the case of experimentally heat-stressed shrimps, with respect to control (unstressed) animals. Here, we report the first quantification of the expression of multiple hsp70 genes following heat stress in a deep-sea vent species living at 2300 m depth. Our results show a strong increase of hsp70 inducible genes in the vent shrimp (∼ 400-fold) compared to the coastal shrimp (∼ 15-fold). We therefore propose that, the highly inducible molecular response observed in R. exoculata may contribute to the ability of this species to tolerate thermal extremes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.