Abstract
This paper compares two approaches to predict the overall mechanical properties of solids with irregularly shaped pores. The first approach involves direct finite element simulations of representative volume elements containing arrangements of irregularly shaped pores subjected to periodic boundary conditions. The second approach utilizes numerical results for individual defect shapes in a micromechanical scheme. Several realizations of parallel and randomly oriented distributions of defects are considered. It is determined that the Mori-Tanaka micromechanical scheme provides good correlation with the full field finite element simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.