Abstract

BackgroundGenomic breeding value estimation is the key step in genomic selection. Among many approaches, BLUP methods and Bayesian methods are most commonly used for estimating genomic breeding values. Here, we applied two BLUP methods, TABLUP and GBLUP, and three Bayesian methods, BayesA, BayesB and BayesCπ, to the common dataset provided by the 15th QTL-MAS Workshop to evaluate and compare their predictive performances.ResultsFor the 1000 progenies without phenotypic values, the correlations between GEBVs by different methods ranged from 0.812 (GBLUP and BayesCπ) to 0.997 (TABLUP and BayesB). The accuracies of GEBVs (measured as correlations between true breeding values (TBVs) and GEBVs) were from 0.774 (GBLUP) to 0.938 (BayesCπ) and the biases of GEBVs (measure as regressions of TBVs on GEBVs) were from 1.033 (TABLUP) to 1.648 (GBLUP). The three Bayesian methods and TABLUP had similar accuracy and bias.ConclusionsBayesA, BayesB, BayesCπ and TABLUP performed similarly and satisfactorily and remarkably outperformed GBLUP for genomic breeding value estimation in this dataset. TABLUP is a promising method for genomic breeding value estimation because of its easy computation of reliabilities of GEBVs and its easy extension to real life conditions such as multiple traits and consideration of individuals without genotypes.

Highlights

  • Genomic breeding value estimation is the key step in genomic selection

  • The goal of genomic selection (GS) [1] is to capture all quantitative trait loci (QTL) influencing a trait by tracing all chromosome segments defined by adjacent markers

  • With use of highly dense markers, GS is supposed to be able to overcome the problem of traditional maker assisted selection (MAS) that only a limited proportion of the total genetic variance is captured by the markers of QTL

Read more

Summary

Introduction

Genomic breeding value estimation is the key step in genomic selection. BLUP methods and Bayesian methods are most commonly used for estimating genomic breeding values. We applied two BLUP methods, TABLUP and GBLUP, and three Bayesian methods, BayesA, BayesB and BayesCπ, to the common dataset provided by the 15th QTL-MAS Workshop to evaluate and compare their predictive performances. The goal of genomic selection (GS) [1] is to capture all quantitative trait loci (QTL) influencing a trait by tracing all chromosome segments defined by adjacent markers. With use of highly dense markers, GS is supposed to be able to overcome the problem of traditional maker assisted selection (MAS) that only a limited proportion of the total genetic variance is captured by the markers of QTL.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.