Abstract

The NH3 thermal annealing and decoupled plasma nitridation (DPN) processes are compared for the equivalent oxide thickness (EOT) scaling of atomic-layer-deposited hafnium zirconate (HfZrO2) gate dielectric. Detailed physical, optical, and electrical characteristics of nitrided HfZrO2 (HfZrON) film are reported. It is found that DPN can yield a thinner SiOx interfacial layer (IL) (about 0.12 nm more in terms of EOT scaling) and a more densified HfZrO2 layer compared to those obtained using NH3 thermal annealing at a 16% nitrogen dose. NH3 thermal nitridation causes a large nitrogen distribution tail at the SiOx IL/Si substrate interface and increases leakage current, which suppresses EOT scalability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.