Abstract

AbstractThe mechanical torsion data in the form of flow curves and strain hardening rates from both as-cast and worked 300 series austenitic stainless steels, tested in the range 1200-900°C and 0.1 to 5.0 s-1, have been analysed to deepen understanding of dynamic softening mechanisms. The critical strain for dynamic recrystallization (DRX) is determined from the downward inflection of the strain hardening rate-stress curves, and completion of DRX is taken from the start of the steady-state regime. The rate of softening can be described by means of the Avrami equation with a mean k value of 1.27. These conclusions, based upon mechanical data, have been confirmed by optical metallographic methods. The peak strain (e p) at which there is about 30% DRX is shown to be a function of the Zener-Hollomon parameter (Z) and the original grain size (D0). The transition from multiple-peak grain coarsening to single-peak grain refinement behaviour has been determined. While the DRX grain size is a linear function of th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.