Abstract

AbstractAlfalfa is a crucial feed source for livestock, necessitating proper drying to achieve optimal moisture levels before consumption. This study aims to reveal alfalfa's drying characteristics and quality properties, defined as the queen of feed, by drying it under different drying conditions. Alfalfa samples were dried using different drying techniques: Open-sun, shade, greenhouse, hybrid (microwave-air-convective), air-convective, microwave, and freeze-drying. The influence of drying techniques on the drying kinetics, energy aspects, biochemical properties, mineral composition, fatty acids, carotene, and color attributes of alfalfa were investigated. Present findings revealed that shade and high-temperature drying conditions increased the crude fiber content (23.18%) of alfalfa samples. The highest protein values were found in open-sun drying (22.01%) and 60 °C air-convective drying (22.10%). The highest values for mineral composition were determined in freeze drying, and the greatest Zn (33.68 ppm) and Fe (135.45 ppm) contents were determined in 100 °C air-convective drying. The highest saturated fatty acids open-sun (21.27%) and freeze dryer (21.07%), unsaturated fatty acids at 60 °C (84.51%) and 80 °C (84.26%), poly unsaturated fatty acids at 60 °C (78.36%), 80 °C (78.14%) and 100 °C (77.74%) were obtained. The drying kinetics of alfalfa were best modeled with the Jena&Das, and in terms of a* (greenness) values, the hybrid drying yielded the best results. The lowest total energy consumption (54.00 kWh) was seen in 200W + 80 °C hybrid drying and the highest (324.72 kWh) in 100 °C air-convective drying. The color attributes and energy consumption findings showed that hybrid drying could efficiently be used for alfalfa drying. In addition, freeze drying was determined to be the best drying method in terms of nutrient preservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.