Abstract

Over the past decade preparation, characterization and modeling of nanofluids plentifully deliberated to improve the heat transfer effects. Hence to gratify the advancements this paper focuses on heat transfer effects of three distinct hybrid nanoparticles and with a base fluid (water). So this work numerically investigated the influence over a permeable flat surface with aligned magnetic field in the presence of suction or injection or impermeable together with the Marangoni convection of different hybrid nanofluids. The present results are validated with previous experimental and numerical results. The effect of solid volume fraction of hybrid nanoparticles, angle of inclination, magnetic parameter and wall mass transfer parameter are deliberated and offered through graphs together with the surface velocity and rate of heat transfer is presented in tabular form. It is found that the rate of heat transfer is increased with an increment of wall mass transfer parameter and an opposite effect of the rising of magnetic parameter. Among the three hybrid nanofluids water hybrid nanofluid has higher surface velocity, water hybrid nanofluid has higher temperature profile and water hybrid nanofluid has higher heat transfer rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.