Abstract
To develop strategies for determining thermal conductivity based on the prediction of a complex heterogeneous materials system and loaded nuclear waste forms, the computational efficiency and accuracy of different upscaling methods has been evaluated. The effective thermal conductivity, obtained from microstructure information and local thermal conductivity of different components, is critical in predicting the life and performance of waste forms during storage. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling method, were developed and implemented. Microstructure-based finite-element method (FEM) prediction results were used to as a benchmark to determine the accuracy of the different upscaling methods. Micrographs from waste forms with varying waste loadings were used in the prediction of thermal conductivity in FEM and homogenization methods. Prediction results demonstrated that in term of efficiency, boundary models (e.g., Taylor model and Sachs model) are stronger than the self-consistent model, statistical upscaling method, and finite-element method. However, when balancing computational efficiency and accuracy, statistical upscaling is a useful method in predicting effective thermal conductivity for nuclear waste forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.