Abstract
In this study, the Pima Indian Diabetes dataset was categorized with 8 different classifiers. The data were taken from the University of California Irvine Machine Learning Repository's web site. As a classifier, 6 different neural networks [probabilistic neural network (PNN), learning vector quantization, feedforward networks, cascade-forward networks, distributed time delay networks (DTDN), and time delay networks], the artificial immune system, and the Gini algorithm from decision trees were used. The classifier's performance ratios were studied separately as accuracy, sensitivity, and specificity and the success rates of all of the classifiers are presented. Among these 8 classifiers, the best accuracy and specificity values were achieved with the DTDN and the best sensitivity value was achieved with the PNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.