Abstract

This paper presents a series of five models that were formulated for describing the neural control of the lower urinary tract in humans. A parsimonious formulation of the effect of the sympathetic system, the pre-optic area, and urethral afferents on the simulated behavior are included. In spite of the relative simplicity of the five models studied, behavior that resembles normal lower urinary tract behavior as seen during an urodynamic investigation could be simulated. The models were tested by studying their response to disturbances of the afferent signal from the bladder. It was found that the inhibiting reflex that results from including the sympathetic system or the pre-optic area (PrOA) only counteracts the disturbance in the storage phase. Once micturition has started, these inhibiting reflexes are suppressed. A detrusor contraction that does not result in complete micturition similar to an unstable detrusor contraction could be simulated in a model including urethral afferents. Owing to the number of uncertainties in these models, so far no unambiguous explanation of normal and pathological lower urinary tract behavior can be given. However, these models can be used as an additional tool in studies of the mechanisms of the involved neural control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.