Abstract

AbstractTwo methods of decoupling pressure fluctuations in fluidized beds by using the incoherent part (IOP) of absolute pressure (AP) and differential pressure (DP) fluctuations are evaluated in this study. Analysis is conducted first to demonstrate their similarities, differences, and drawbacks. Then, amplitudes, power spectral densities, mean frequencies, coherence functions, and filtering indices of the IOP of AP and DP fluctuations are calculated and compared based on experimental data from a two‐dimensional fluidized column of FCC particles. Derived bubble sizes are also compared with the sizes of bubbles viewed in the two‐dimensional bed. The results demonstrate the similarity of these two methods in filtering out global compression wave components from absolute pressure fluctuations, especially those generated from oscillations of fluidized particles and gas flow rate fluctuations. However, both methods are imperfect. Neither can filter out all the compression wave components and retain all the useful bubble‐related wave components. Their amplitudes can be used to characterize global bubble property and quality of gas–solids contacting in bed, but they do not give accurate measurement of bubble sizes. © 2009 American Institute of Chemical Engineers AIChE J, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.