Abstract

The primary goal of this study was to describe and compare the criteria used to assess carcinogenic activity. The statistically-based predictive quantitative structure–activity relationship (QSAR) models based on the counter propagation artificial neural network (CPANN) algorithm, and knowledge-based expert systems based on a decision tree structural alert (SA) approach (Toxtree application), were considered. The integration of the QSAR (CPANN models) and SAR (Toxtree SA application) approach contributed to the mechanistic understanding of the QSAR model considered. The mapping technique inherent to CPANN Kohonen enables us to relate the similarities or dissimilarities within a congeneric set of chemicals with particular SAs for carcinogenicity. The focus of our investigations was the similarities and dissimilarities of the features used in the QSAR and SAR methods. Due to the complexity of the carcinogenic endpoint, the integration of different approaches allows the models to be improved and provides a valuable technique for evaluating the safety of chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.