Abstract

This study focuses on crack propagation rates of AISI 304 stainless-steel specimens made from selected structural components experimentally tested in three-point bending. Components of two productions loaded with constant force with selected stress ratio were submitted to cyclic loading in order to measure crack opening displacement. Experimentally obtained data were evaluated using 3D modelling in finite element modeling software intending to determine fracture mechanical parameters. The tool to describe fatigue behavior was Paris’ law, used to describe crack propagation in intermediate crack growth rate range. Paris–Erdogan equation was evaluated as a fitting of linear part of the graphical plot of crack growth rate with respect to the stress intensity range and material constants were gained from numerical description of the relation. Comparison of fatigue crack behavior in AISI 304 steel components of two productions was studied and evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.