Abstract
An essential task in a genomic analysis of a human disease is limiting the number of strongly associated genes when studying susceptibility to the disease. The goal of this study was to compare computational tools with and without feature selection for predicting osteoporosis outcome in Taiwanese women based on genetic factors such as single nucleotide polymorphisms (SNPs). To elucidate relationships between osteoporosis and SNPs in this population, three classification algorithms were applied: multilayer feedforward neural network (MFNN), naive Bayes, and logistic regression. A wrapper-based feature selection method was also used to identify a subset of major SNPs. Experimental results showed that the MFNN model with the wrapper-based approach was the best predictive model for inferring disease susceptibility based on the complex relationship between osteoporosis and SNPs in Taiwanese women. The findings suggest that patients and doctors can use the proposed tool to enhance decision making based on clinical factors such as SNP genotyping data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.