Abstract

The ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS~E) technology was employed to compare the chemical components between the aerial and underground parts of Coptis chinensis samples from different batches. According to the retention time, molecular ion peak, and LC-MS~E fragment information of the reference substances and available literature, we identified a total of 40 components. Thirty-three and 31 compounds were respectively identified in the underground part(taproots) and the aerial part(stems and leaves) of C. chinensis. Among them, 24 compounds, including alkaloids(e.g., berberine and jatrorrhizine) and phenolic acids(e.g., chlorogenic acid, quinic acid, and tanshinol), were common in the two parts. In addition, differential components were also identified, such as magnoline glucoside in the underground part and(±) lariciresionol-4-β-D-glucopyranoside in the aerial part. The analysis of fragmentation pathways based on spectra of reference substances indicated the differences among samples of different batches. Furthermore, we performed the principal component analysis(PCA) for the peak areas of C. chinensis in different batches. The results showed that the underground part and the aerial part were clearly clustered into two groups, indicating that the chemical components contained in the two parts were different. Furthermore, the results of partial least squares discriminant analysis(PLS-DA) identified 31 differential compounds(VIP value>1) between the underground part and the aerial part, mainly including alkaloids, phenolic acids, lignans, and flavonoids. This study proves that C. chinensis possesses great development potential with multiple available compounds in stems and leaves. Moreover, it sheds light on for the development and utilization of non-medicinal organs of C. chinensis and other Chinese medicinal herbs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.