Abstract

The electroencephalogram (EEG) rhythm and functional near-infrared spectroscopy (fNIRS) activation levels have not been compared between a healthy control group (HCG) and methamphetamine user group (MUG) with different addiction histories. This study used 64-electrode EEG and fNIRS to conduct an experiment that analyzed the resting and craving states. The EEG and fNIRS data of 56 participants were collected, including 14 healthy participants, 14 methamphetamine users with an addiction history of 0.5–5 years, 14 users with an addiction history of 5–10 years, and 14 users with an addiction history of 10–15 years. Isolated effective coherence (iCoh) within the brain network was used to process the EEG data. Statistical analysis was performed to compare differences in iCoh among the delta, theta, alpha, beta, and gamma bands and explore oxyhemoglobin activation levels in the ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, orbitofrontal cortex, and frontopolar prefrontal cortex (FPC) of the control group. Finally, the Kmeans, Gaussian mixed model (GMM), linear discriminant analysis (LDA), support vector machine (SVM), Bayes, and convolutional neural networks (CNN) algorithms were used to classify methamphetamine users based on drug and neutral images. A 3-class accuracy was achieved. Changes in EEG and fNIRS activation levels of HCG and MUG with varied addiction histories were demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.