Abstract
Based on the yeast Kluyveromyces lactis, a strain-producer of recombinant alpaca prochymosin (Vicugna pacos) was developed. A comparative analysis of the biochemical properties of recombinant alpaca chymosin obtained in the expression systems of K. lactis and Escherichia coli was carried out. It was found that the recombinant alpaca chymosin synthesized in K. lactis exceeds the analog obtained in E. coli by 12.9 times in the number of enzyme turnovers, and by 2.9 times in catalytic efficiency. Compared to chymosin expressed in E. coli, the enzyme obtained in a eukaryotic producer has a thermal stability threshold increased by 5°C. Replacing a prokaryotic producer with a eukaryotic one enhances the negative sensitivity of the milk-clotting activity of recombinant alpaca chymosin to an increase in substrate pH in the range of 6.1–6.9, which is accompanied by an increase in the duration of coagulation by 8–35%. With an increase in the concentration of CaCl2 in the substrate, the coagulation activity of the target enzyme synthesized in E. coli was 12–14% higher than that of its analogue obtained in K. lactis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.