Abstract

Traceability of beef attributes from small- and mid-sized farms through supply chains is a market barrier. The objective of this trial was to determine the influence of fabrication method on beef traceability system requirements. Individual identities of 54 animals were maintained through harvest, processing, packaging, and distribution. At harvest, each animal’s unique radio frequency identification (RFID) animal identification number was transferred to a harvest label on each carcass quarter. Following transportation to a processor, nine carcasses were processed on alternating days by one of the two methods. Carcasses were fabricated, using a serial fabrication method (SFM), into wholesale cuts one at a time or fabricated using a parallel fabrication method (PFM), by processing multiple hindquarters or forequarters simultaneously into wholesale cuts. In-process labels were generated by scanning the two-dimensional (2D) barcode on the harvest label with a handheld mobile computer and printed from a wireless mobile printer. Tracking of SFM and PFM carcass quarters was accomplished by creating in-process labels for lugs and individual wholesale cuts, respectively. The process was recorded and the data was captured from video analysis. The mean number of in-process labels generated per carcass for SFM was 3.7 and for PFM was 30.9 (P < 0.01). The amount of time required for generating in-process labels for SFM (2 min 16 s) was less than PFM (8 min 45 s) (P = 0.01). The amount of time required to label each carcass was less (P < 0.01) for SFM (18 s) than for PFM (3 min 10 s) with in-process labels. Total cost of traceability, including fixed and consumable cost per carcass, was nearly twice as much for PFM ($17.98) than SFM ($9.02). Traceability, within both processing methods, was found to have 100% fidelity, as verified using DNA marker genotyping. Overall, the number of labels generated for traceability was less for SFM than that for PFM. The overall time spent on generating, applying, and removing labels was less for SFM than that for PFM. The total cost of traceability was approximately half for SFM compared with that for PFM; however both methods were able to track product accurately. Tracking of beef from individual animals, using RFID ear tags and 2D barcodes, appears to be feasible for the fabrication methods used in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.