Abstract

Subsurface habitats harbor novel diversity that has received little attention until recently. Accessible subsurface habitats include lava caves around the world that often support extensive microbial mats on ceilings and walls in a range of colors. Little is known about lava cave microbial diversity and how these subsurface mats differ from microbial communities in overlying surface soils. To investigate these differences, we analyzed bacterial 16S rDNA from 454 pyrosequencing from three colors of microbial mats (tan, white, and yellow) from seven lava caves in Lava Beds National Monument, CA, USA, and compared them with surface soil overlying each cave. The same phyla were represented in both surface soils and cave microbial mats, but the overlap in shared OTUs (operational taxonomic unit) was only 11.2%. Number of entrances per cave and temperature contributed to observed differences in diversity. In terms of species richness, diversity by mat color differed, but not significantly. Actinobacteria dominated in all cave samples, with 39% from caves and 21% from surface soils. Proteobacteria made up 30% of phyla from caves and 36% from surface soil. Other major phyla in caves were Nitrospirae (7%) followed by minor phyla (7%), compared to surface soils with Bacteroidetes (8%) and minor phyla (8%). Many of the most abundant sequences could not be identified to genus, indicating a high degree of novelty. Surface soil samples had more OTUs and greater diversity indices than cave samples. Although surface soil microbes immigrate into underlying caves, the environment selects for microbes able to live in the cave habitats, resulting in very different cave microbial communities. This study is the first comprehensive comparison of bacterial communities in lava caves with the overlying soil community.

Highlights

  • Most life on Earth in the aphotic subsurface is microbial [1], but there is much that we do not yet know about subsurface life

  • We examined a range of environmental, geographical, and chemical factors that may contribute to bacterial diversity in microbial mats of different colors from lava caves in Lava Beds National Monument, California, USA

  • Most notable is the lower percentage of Actinobacteria in surface soil samples (21%) versus cave samples (39%), the reduction in the Nitrospirae in surface (3%) vs. cave samples (7%), and the increase in Alphaproteobacteria in the surface soil samples (17%) compared to the cave samples (10%)

Read more

Summary

Introduction

Most life on Earth in the aphotic subsurface is microbial [1], but there is much that we do not yet know about subsurface life. Yellow, tan, gold, orange, and pink, with shades in between [7,8,9,10,11] Despite their extensive nature, little is known about microbial mat diversity (reviewed in [11,12]). Stoner and Howarth [16] first described the mats or “slimes” in Hawaiian lava caves using culture-dependent methods for isolation of chemoheterotrophic microorganisms and reported on the presence of fungi and aerobic bacteria. They suggested that white and brown slimes might be important sites for nutrient cycling in caves, nitrogen

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.