Abstract

We analyze the asymptotic structure of two classical models of mathematical biology, the models of electrical action by Hodgkin-Huxley (1952) for a giant squid axon and by Noble (1962) for mammalian Purkinje fibres. We use the procedure of parametric embedding to formally introduce small parameters in these experiment-based models. Although one of the models was designed as a modification of the other, their structure with respect to the small parameters appears to be entirely different: the Hodgkin-Huxley model has two slow and two fast variables, while Noble's model has one slow variable, two fast variables, and one superfast variable. The singular perturbation theory of these models adequately reproduces some features of the accurate numeric solutions, such as excitability and the shape of the voltage upstroke, but fails to reproduce other features, such as the relatively slow return from the excited state, compared to the speed of the upstroke. We present arguments towards the viewpoint that contrary to the conjecture proposed by Zeeman (1972), for these two models this failure is an inevitable consequence of the Tikhonov-style appearance of the small parameters, and a more adequate asymptotic description may only be achieved with small parameters entering the equations in a significantly different way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.