Abstract

In this article, we consider an optimal control problem for an elliptic partial differential equation with random inputs. To determine an applicable deterministic control fˆ(x), we consider the four cases which we compare for efficiency and feasibility. We prove the existence of optimal states, adjoint states and optimality conditions for each cases. We also derive the optimality systems for the four cases. The optimality system is then discretized by a standard finite element method and sparse grid collocation method for physical space and probability space, respectively. The numerical experiments are performed for their efficiency and feasibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.