Abstract

This paper demonstrates the applications of artificial neural networks to predict the equivalent continuous sound level $$(L_\mathrm{Aeq})$$ and 10 Percentile exceeded sound level $$(L_\mathrm{10})$$ generated due to traffic noise for various locations in Delhi. A Model based on back-propagation neural network was trained, validated, and tested using the measured data. The work shows that the model is able to produce accurate predictions of hourly traffic noise levels. A comparative study shows that neural networks out-perform the multiple linear regression models developed in terms of total traffic flow and equivalent traffic flow. The prediction model proposed in the study may serve as a vital tool for traffic noise forecasting and noise abatement measures to be undertaken for Delhi city.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.