Abstract

This article compares results of using dynamic triangular forced-choice olfactometry (DTFCO), the Mask Scentometer, the Nasal Ranger, and an odor intensity reference scale (OIRS) to assess odors in a controlled-environment chamber in the Iowa State University Air Dispersion Laboratory. The methods were used to assess 13 odor levels in the chamber. Swine manure mixed with water was used to vary the odor levels. DTFCO did not correlate well to the other ambient odor assessment methods. Predicting dilution to threshold (D/T) using intensity ratings compared to using intensity ratings directly degraded the coefficient of determination (Ro 2 ) through zero with the other methods in all cases. Average intensity-predicted D/T, the Mask Scentometer, and the Nasal Ranger correlated well with each other, with strong Ro 2 values (greater than 0.85) and regression slopes near 1, and the session means were not found to be significantly different ( = 0.05). Using the geometric means of the device D/T settings, (D/T)G, improved the Ro 2 values between the other methods and the Nasal Ranger and Mask Scentometer. Average intensity-predicted D/T values were three to four times higher than Nasal Ranger assessment ((D/T)G and D/T, respectively), and Nasal Ranger (D/T)G was roughly five times higher than Mask Scentometer (D/T)G.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.