Abstract

The comparison between non-magnetic spin-Peierls (SP) and magnetic Néel ground states have been investigated in CuGeO 3 doped with Zn 2+, Ni 2+ and Mn 2+ ions by using the electron spin resonance (ESR) techniques in the temperature range of 3–300 K. It was concluded that the one-dimensional (1D) antiferromagnetic (AF) spin chain formed of spin-1/2 (Cu 2+) ions is broken by spin-0 (Zn 2+), spin-1 (Ni 2+), and spin-5/2 (Mn 2+) ions, giving uncoupled spins at the end of the chains that give extra contribution to the spectra at lower temperature. An almost linearly dependence of frequency of resonance field has been showed for X-, K- and Q-band spectra. By the analysis of resonance field–frequency relations, the effects of the internal field is refined and thus the spectroscopic g-factor and internal field were calculated to be g = 1.9386 and H i = 148 G, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.