Abstract

The aim of this paper is to present an efficient numerical procedure for solving the Abel’s integral equation of the first and second kind and compare it with block-pulse functions (BPFs) method. The proposed method is based on Chebyshev wavelets approximation. This method transforms the integral equation into the matrix equation. The advantages of Chebyshev wavelets are that the values of μ k and M are adjustable as well as it can yield more accurate numerical solutions than piecewise constant orthogonal functions on the solution of integral equations. The uniform convergence theorem and accuracy estimation are derived and numerical examples show the validity and the wide applicability of the Chebyshev wavelets approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.