Abstract
This paper tackles with two methods to dimensionality reduction, namely principal component analysis (PCA ) in the case of linear combinations and kernel principal component analysis method in the case of nonlinear combinations to digital image processing and analysis for useful information .And then compare the two methods and know which methods are appropriate to imaging dimensionality reduction The methods were applied to a group of satellite images of an area in the province of Basra, which represents the mouth of the Tigris and Euphrates in the Shatt al-Arab, as well as the water channels permeating Basra Governorate and the water bodies scattered around these channels.In this research, it is shown that the fourth image band is best when using the PCA method the value of it is eigen value was the biggest ,while the KPCA method showed that the third image band was the best, giving the highest latent value. Comparing the two methods using the mean error error (MSE) method, the results showed that the main KPCA method was the best.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.