Abstract

AbstractHydro‐geochemical characterization is challenging in dyke intruded complex geological setting. The comparison between self‐organizing map (SOM) classification and principal component analysis (PCA) is used for better understanding of hydrogeological process surrounding Amarpur dyke in Dhanbad district, Jharkhand. Total 30 water samples were collected and tested for 12 physicochemical parameters. The K‐means clustering with SOM grouped the water quality data into cluster 1 (46.67%, low mineralization), cluster 2 (36.67%, moderate mineralization) and cluster 3 (16.67%, high mineralization). The clusters of the majority of samples identified by PCA analysis is almost same as identified by SOM with little difficulty in discriminating between cluster 2 and cluster 3. The transformation of Ca‐HCO3 to Ca‐Cl‐SO4 occurred because of exchange of Ca2+ with Na+ adsorbed in the aquifer leading excess of sulphate ions. The results of this study suggest that SOM is an effective tool for a better understanding of patterns and processes driving water quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.