Abstract

The purpose of this study was to analyze the relevance of introducing the maximal power (P(m)) into a critical-power model. The aims were to compare the P(m) with the instantaneous maximal power (P(max)) and to determine how the P(m) affected other model parameters: the critical power ( P(c)) and a constant amount of work performed over P(c)(W'). Twelve subjects [22.9 (1.6) years, 179 (7) cm, 74.1 (8.9) kg, 49.4 (3.6) ml/min/kg] completed one 15 W/min ramp test to assess their ventilatory threshold (VT), five or six constant-power to exhaustion tests with one to measure the maximal accumulated oxygen deficit (MAOD), and six 5-s all-out friction-loaded tests to measure P(max) at 75 rpm, which was the pedaling frequency during tests. The power and time to exhaustion values were fitted to a 2-parameter hyperbolic model (NLin-2), a 3-parameter hyperbolic model (NLin-3) and a 3-parameter exponential model (EXP). The P(m) values from NLin-3 [760 (702) W] and EXP [431 (106) W] were not significantly correlated with the P(max) at 75 rpm [876 (82) W]. The P(c) value estimated from NLin-3 [186 (47) W] was not significantly correlated with the power at VT [225 (32) W], contrary to other models ( P <0.001). The W' from NLin-2 [25.7 (5.7) kJ] was greater than the MAOD [14.3 (2.7) kJ, P < 0.001] with a significant correlation between them (R = 0.76, P <0.01). For NLin-3, computation of W (P > P c), the amount of work done over P(C), yielded results similar to the W' value from NLin-2: 27.8 (7.4) kJ, which correlated significantly with the MAOD (R = 0.72, P <0.01). In conclusion, the P(m) was not related to the maximal instantaneous power and did not improve the correlations between other model parameters and physiological variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.